11 research outputs found

    Comparative investigation of Al- and Cr-doped TiSiCN coatings

    No full text
    The aim of this work was a comparative investigation of the structure and properties of Al- and Cr-doped TiSiCN coatings deposited by magnetron sputtering of composite TiAlSiCN and TiCrSiCN targets produced by self-propagating high-temperature synthesis method. Based on X-ray diffraction, scanning and transmission electron microscopy, X-ray photoelectron spectroscopy, and Raman spectroscopy data, the Al- and Cr-doped TiSiCN coatings possessed nanocomposite structures (Ti,Al)(C,N)/a-(Si,C) and (Ti,Cr)(C,N)/a-SiCxNy/a-C with cubic crystallites embedded in an amorphous matrix. To evaluate the thermal stability and oxidation resistance, the coatings were annealed either in vacuum at 1000, 1100, 1200, and 1300°C or in air at 1000°C for 1h. The results obtained show that the hardness of the Al-doped TiSiCN coatings increased from 41 to 46GPa, reaching maximum at 1000°C, and then slightly decreased to 38GPa at 1300°C. The Cr-doped TiSiCN coatings demonstrated high thermal stability up to 1100°C with hardness above 34GPa. Although both Al- and Cr-doped TiSiCN coatings possessed improved oxidation resistance up to 1000°C, the TiAlSiCN coatings were more oxidation resistant than their TiCrSiCN counterparts. The TiCrSiCN coatings showed better tribological characteristics both at 25 and 700°C and superior cutting performance compared with the TiAlSiCN coatings. © 2011 Elsevier B.V.The work was fulfilled due to financial support from the Ministry of Education and Science of the Russian Federation (Contracts 02.740.11.0859 and П1248). The authors thank A.V. Levanov (Moscow State University) for Raman spectroscopy investigations and T.B. Sagalova (MISIS) for help with XRD measurements.Peer Reviewe
    corecore